Moberg, G. P. Biological responses to stress: implications for animal welfare., 1–21 (CABI Publishing, 2000).
Levine, E. D. Feline Fear and Anxiety. Veterinary Clinics of North America: Small Animal Practice38, 1065–1079. https://doi.org/10.1016/j.cvsm.2008.04.010 (2008).
Google Scholar
Amat, M., Camps, T. & Manteca, X. Stress in owned cats: behavioural changes and welfare implications. Journal of Feline Medicine and Surgery18, 577–586. https://doi.org/10.1177/1098612×15590867 (2016).
Google Scholar
Tanaka, A., Wagner, D. C., Kass, P. H. & Hurley, K. F. Associations among weight loss, stress, and upper respiratory tract infection in shelter cats. Journal of the American Veterinary Medical Association240, 570–576. https://doi.org/10.2460/javma.240.5.570 (2012).
Google Scholar
Stella, J. L., Lord, L. K. & Buffington, C. A. T. Sickness behaviors in response to unusual external events in healthy cats and cats with feline interstitial cystitis. Journal of the American Veterinary Medical Association238, 67–73. https://doi.org/10.2460/javma.238.1.67 (2011).
Google Scholar
Stella, J., Croney, C. & Buffington, T. Effects of stressors on the behavior and physiology of domestic cats. Applied Animal Behaviour Science143, 157–163. https://doi.org/10.1016/j.applanim.2012.10.014 (2013).
Google Scholar
Carlstead, K., Brown, J. L. & Strawn, W. Behavioral and physiological correlates of stress in laboratory cats. Applied Animal Behaviour Science38, 143–158. https://doi.org/10.1016/0168-1591(93)90062-t (1993).
Google Scholar
Luescher, A. U. Diagnosis and management of compulsive disorders in dogs and cats. Clinical Techniques in Small Animal Practice19, 233–239. https://doi.org/10.1053/j.ctsap.2004.10.005 (2004).
Google Scholar
Cameron, M. E., Casey, R. A., Bradshaw, J. W. S., Waran, N. K. & Gunn-Moore, D. A. A study of environmental and behavioural factors that may be associated with feline idiopathic cystitis. Journal of Small Animal Practice45, 144–147. https://doi.org/10.1111/j.1748-5827.2004.tb00216.x (2004).
Google Scholar
Heath, S. E. in The Welfare of Cats (ed I. Rochlitz) Ch. Behaviour problems and welfare, 91–118 (Springer Netherlands, 2007).
Mariti, C. et al. The perception of cat stress by Italian owners. Journal of Veterinary Behavior20, 74–81. https://doi.org/10.1016/j.jveb.2017.04.002 (2017).
Google Scholar
McCobb, E. C., Patronek, G. J., Marder, A., Dinnage, J. D. & Stone, M. S. Assessment of stress levels among cats in four animal shelters. Journal of the American Veterinary Medical Association226, 548–555. https://doi.org/10.2460/javma.2005.226.548 (2005).
Google Scholar
Broom, D. M. The scientific assessment of animal welfare. Applied Animal Behaviour Science20, 5–19. https://doi.org/10.1016/0168-1591(88)90122-0 (1988).
Google Scholar
Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A. & Meyer, J. S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology147, 255–261. https://doi.org/10.1016/j.ygcen.2006.01.005 (2006).
Google Scholar
Meyer, J., Novak, M., Hamel, A. & Rosenberg, K. Extraction and Analysis of Cortisol from Human and Monkey Hair. Journal of Visualized Experimentshttps://doi.org/10.3791/50882 (2014).
Google Scholar
Koren, L. et al. A novel method using hair for determining hormonal levels in wildlife. Animal Behaviour63, 403–406. https://doi.org/10.1006/anbe.2001.1907 (2002).
Google Scholar
Cirimele, V., Kintz, P., Dumestre, V., Goullé, J. P. & Ludes, B. Identification of ten corticosteroids in human hair by liquid chromatography–ionspray mass spectrometry. Forensic Science International107, 381–388. https://doi.org/10.1016/S0379-0738(99)00180-2 (2000).
Google Scholar
González-de-la-Vara, M. D. R. et al. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle. The Canadian Journal of Veterinary Research75, 216–221 (2011).
Google Scholar
Heimbürge, S., Kanitz, E. & Otten, W. The use of hair cortisol for the assessment of stress in animals. General and Comparative Endocrinology270, 10–17. https://doi.org/10.1016/j.ygcen.2018.09.016 (2019).
Google Scholar
Russell, E., Koren, G., Rieder, M. & Van Uum, S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology37, 589–601. https://doi.org/10.1016/j.psyneuen.2011.09.009 (2012).
Google Scholar
Yumi Yamanashi, M. T. Naruki Morimura, Satoshi Hirata, Juri Suzuki, Misato Hayashi, Kodzue Kinoshita, Miho Murayama, Gen’ichi Idani Analysis of hair cortisol levels in captive chimpanzees: Effect of various methods on cortisol stability and variability. MethodsX3, 110–117. https://doi.org/10.1016/j.mex.2016.01.004 (2016).
Google Scholar
Macbeth, B. J., Cattet, M. R. L., Stenhouse, M. L., Gibeau, K. L. & Janz, D. M. Hair cortisol concentration as a noninvasivemeasure of long-term stress in free-ranginggrizzly bears (Ursusarctos): considerations withimplications for other wildlife. Can. J. Zool.88, 935–949 (2010).
Google Scholar
Meyer, J. S. & Novak, M. A. Minireview: Hair Cortisol: A Novel Biomarker of Hypothalamic-Pituitary-Adrenocortical Activity. Endocrinology153, 4120–4127. https://doi.org/10.1210/en.2012-1226 (2012).
Google Scholar
Carlitz, E. H. D. et al. Measuring Hair Cortisol Concentrations to Assess the Effect of Anthropogenic Impacts on Wild Chimpanzees (Pan troglodytes). PLOS ONE11, e0151870. https://doi.org/10.1371/journal.pone.0151870 (2016).
Google Scholar
Cattet, M., Macbeth, B. J., Janz, D. M., Zedrosser, A., Swenson, J. E., Dumond, M., Stenhouse, G. B. . Quantifying long-term stress in brown bears with the hair cortisol concentration: a biomarker that may be confounded by rapid changes in response to capture and handling. Conservation Physiology2, https://doi.org/10.1093/conphys/cou026 (2014).
Ito, N. et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. The FASEB Journal19, 1332–1334. https://doi.org/10.1096/fj.04-1968fje (2005).
Google Scholar
Salaberger, T. et al. Influence of external factors on hair cortisol concentrations. General and Comparative Endocrinology233, 73–78. https://doi.org/10.1016/j.ygcen.2016.05.005 (2016).
Google Scholar
Bennett, A. & Hayssen, V. Measuring cortisol in hair and saliva from dogs: coat color and pigment differences. Domestic Animal Endocrinology39, 171–180. https://doi.org/10.1016/j.domaniend.2010.04.003 (2010).
Google Scholar
Burnett, T. A. et al. Short communication: Factors affecting hair cortisol concentrations in lactating dairy cows. Journal of Dairy Science97, 7685–7690. https://doi.org/10.3168/jds.2014-8444 (2014).
Google Scholar
Roth, L. S. V., Faresjö, Å., Theodorsson, E. & Jensen, P. Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs. Scientific Reports6, 19631. https://doi.org/10.1038/srep19631 (2016).
Google Scholar
Bacci, M. L. et al. Hair cortisol determination in sows in two consecutive reproductive cycles. Reproductive Biology14, 218–223. https://doi.org/10.1016/j.repbio.2014.06.001 (2014).
Google Scholar
Sharpley, C. F., Kauter, K. G. & McFarlane, J. R. An Investigation of Hair Cortisol Concentration Across Body Sites and within Hair Shaft. Clinical Medicine Insights3, 17–23 (2010).
Google Scholar
Ryder, M. L. Seasonal changes in the coat of the cat. Research in Veterinary Science21, 280–283 (1976).
Google Scholar
Baker, K. P. Hair growth and replacement in the cat. British Veterinary Journal130, 327–335. https://doi.org/10.1016/S0007-1935(17)35835-9 (1974).
Google Scholar
Contreras, E. T., Vanderstichel, R., Hovenga, C. & Lappin, M. R. Evaluation of hair and nail cortisol concentrations and associations with behavioral, physical, and environmental indicators of chronic stress in cats. Journal of Veterinary Internal Medicinehttps://doi.org/10.1111/jvim.16283 (2021).
Google Scholar
Wojtaś, J. Hair cortisol levels in cats with and without behavioural problems. Journal of Feline Medicine and Surgery25, 1098612X221150624, https://doi.org/10.1177/1098612X221150624 (2023).
Finkler, H. & Terkel, J. Cortisol levels and aggression in neutered and intact free-roaming female cats living in urban social groups. Physiology & Behavior99, 343–347. https://doi.org/10.1016/j.physbeh.2009.11.014 (2010).
Google Scholar
Alekseeva, G. S., Loshchagina, J. A., Erofeeva, M. N. & Naidenko, S. V. Stressed by Maternity: Changes of Cortisol Level in Lactating Domestic Cats. Animals10, 903. https://doi.org/10.3390/ani10050903 (2020).
Google Scholar
Arhant, C., Wogritsch, R. & Troxler, J. Assessment of behavior and physical condition of shelter cats as animal-based indicators of welfare. Journal of Veterinary Behavior10, 399–406. https://doi.org/10.1016/j.jveb.2015.03.006 (2015).
Google Scholar
Carney, H. C. et al. 2016 AAFP Guidelines for the Management of Feline Hyperthyroidism. Journal of Feline Medicine and Surgery18, 400–416. https://doi.org/10.1177/1098612×16643252 (2016).
Google Scholar
Greco, D. S. Diagnosis of Diabetes Mellitus in Cats and Dogs. Veterinary Clinics of North America: Small Animal Practice31, 845–853. https://doi.org/10.1016/S0195-5616(01)50002-9 (2001).
Google Scholar
Vogelnest, L. J. Skin as a marker of general feline health: Cutaneous manifestations of systemic disease. Journal of Feline Medicine and Surgery19, 948–960. https://doi.org/10.1177/1098612X17723246 (2017).
Google Scholar
Galuppi, R. et al. Cortisol levels in cats’ hair in presence or absence of Microsporum canis infection. Research in Veterinary Science95, 1076–1080. https://doi.org/10.1016/j.rvsc.2013.07.023 (2013).
Google Scholar
Accorsi, P. A. et al. Cortisol determination in hair and faeces from domestic cats and dogs. General and Comparative Endocrinology155, 398–402. https://doi.org/10.1016/j.ygcen.2007.07.002 (2008).
Google Scholar
Percie Du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLOS Biology18, e3000410, https://doi.org/10.1371/journal.pbio.3000410 (2020).
I, R. Feline welfare issues. 3rd edn, 131–154 (Cambridge University Press, 2013).
Deborah L. Duffy, R. T. D. d. M., James A. Serpell. Development and evaluation of the Fe-BARQ: A new survey instrument for measuring behavior in domestic cats (Felis s. catus). Behavioural Processes141, 329–341, https://doi.org/10.1016/j.beproc.2017.02.010 (2017).
Heath, S. E. 91–118 (Springer, 2007).
Hendriks, W. H., Tarttelin, M. F. & Moughan, P. J. Seasonal Hair Growth in the Adult Domestic Cat (Felis catus). Comparative Biochemistry and Physiology Part A: Physiology116, 29–35. https://doi.org/10.1016/s0300-9629(96)00113-2 (1997).
Google Scholar
RStudio: Integrated Development Environment for R (2022).
Minitab v. 19.2020.1 (2020).
Gow, R., Thomson, S., Rieder, M., Van Uum, S. & Koren, G. An assessment of cortisol analysis in hair and its clinical applications. Forensic Science International196, 32–37. https://doi.org/10.1016/j.forsciint.2009.12.040 (2010).
Google Scholar
Terwissen, C. V., Mastromonaco, G. F. & Murray, D. L. Influence of adrenocorticotrophin hormone challenge and external factors (age, sex, and body region) on hair cortisol concentration in Canada lynx (Lynx canadensis). General and Comparative Endocrinology194, 162–167. https://doi.org/10.1016/j.ygcen.2013.09.010 (2013).
Google Scholar
De Lange, M. S., Galac, S., Trip, M. R. J. & Kooistra, H. S. High Urinary Corticoid/Creatinine Ratios in Cats with Hyperthyroidism. Journal of Veterinary Internal Medicine18, 152–155. https://doi.org/10.1111/j.1939-1676.2004.tb00154.x (2004).
Google Scholar
Henry, C. J., Clark, T. P., Young, D. W. & Spano, J. S. Urine Cortisol: Creatinine Ratio in Healthy and Sick Cats. Journal of Veterinary Internal Medicine10, 123–126. https://doi.org/10.1111/j.1939-1676.1996.tb02043.x (1996).
Google Scholar
Quimby, J. M., Smith, M. L. & Lunn, K. F. Evaluation of the Effects of Hospital Visit Stress on Physiologic Parameters in the Cat. Journal of Feline Medicine and Surgery13, 733–737. https://doi.org/10.1016/j.jfms.2011.07.003 (2017).
Google Scholar
Sundman, A.-S. et al. Long-term stress levels are synchronized in dogs and their owners. Scientific Reports9, https://doi.org/10.1038/s41598-019-43851-x (2019).
Packer, R. M. A. et al. What can we learn from the hair of the dog? Complex effects of endogenous and exogenous stressors on canine hair cortisol. PLOS ONE14, e0216000. https://doi.org/10.1371/journal.pone.0216000 (2019).
Google Scholar
Lafferty, D. J. R., Laudenslager, M. L., Mowat, G., Heard, D. & Belant, J. L. Sex, Diet, and the Social Environment: Factors Influencing Hair Cortisol Concentration in Free-Ranging Black Bears (Ursus americanus). PLOS ONE10, e0141489. https://doi.org/10.1371/journal.pone.0141489 (2015).
Google Scholar
Azevedo, A. et al. Age, sex and storage time influence hair cortisol levels in a wild mammal population. PLOS ONE14, e0221124. https://doi.org/10.1371/journal.pone.0221124 (2019).
Google Scholar
Laudenslager, M. L., Jorgensen, M. J. & Fairbanks, L. A. Developmental patterns of hair cortisol in male and female nonhuman primates: Lower hair cortisol levels in vervet males emerge at puberty. Psychoneuroendocrinology37, 1736–1739. https://doi.org/10.1016/j.psyneuen.2012.03.015 (2012).
Google Scholar
Braun, U. C., G ; Baumgartner, M R ; Riond, Barbara ; Binz, T M. Hair cortisol concentration and adrenal gland weight in healthy and ill cows. Schweizer Archiv für Tierheilkunde159, 493–495, https://doi.org/10.17236/sat00128 (2017).
Fusi, J. et al. How Stressful Is Maternity? Study about Cortisol and Dehydroepiandrosterone-Sulfate Coat and Claws Concentrations in Female Dogs from Mating to 60 Days Post-Partum. Animals11, 1632. https://doi.org/10.3390/ani11061632 (2021).
Google Scholar
Griffin, B. Profilic Cats: The Estrous Cycle. Compendium23, 1049–1057 (2001).
Franchini, M. et al. Cortisol in hair: a comparison between wild and feral cats in the north-eastern Alps. European Journal of Wildlife Research65, https://doi.org/10.1007/s10344-019-1330-2 (2019).
Miller, G. E., Chen, E. & Zhou, E. S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological bulletin133, 25 (2007).
Google Scholar
Stella, J. & Croney, C. Coping styles in the domestic cat (Felis silvestris catus) and implications for cat welfare. Animals9, 370 (2019).
Google Scholar
McCune, S. The impact of paternity and early socialisation on the development of cats’ behaviour to people and novel objects. Applied Animal Behaviour Science45, 109–124. https://doi.org/10.1016/0168-1591(95)00603-P (1995).
Google Scholar
Elzerman, A. L., Deporter, T. L., Beck, A. & Collin, J.-F. Conflict and affiliative behavior frequency between cats in multi-cat households: a survey-based study. Journal of Feline Medicine and Surgery22, 705–717. https://doi.org/10.1177/1098612×19877988 (2020).
Google Scholar