Turnbaugh, P. J. et al. The human microbiome project. Nature.449, 804–810 (2007).
Google Scholar
The NIH HMP Working Group. The NIH Human Microbiome Project. Genome Res.19, 2317–2323 (2009).
Google Scholar
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature.486, 207–214 (2012).
Google Scholar
Capone, K. A., Dowd, S. E., Stamatas, G. N. & Nikolovski, J. Diversity of the human skin microbiome early in life. J Invest Dermatol.131, 2026–2032 (2011).
Google Scholar
Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science.326, 1694–1697 (2009).
Google Scholar
Grice, E. A. & Segre, J. A. The skin microbiome. Nat Rev Microbiol.9, 244–253 (2011).
Google Scholar
Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature.498, 367–370 (2013).
Google Scholar
Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature.514, 59–64 (2014).
Google Scholar
Wylie, K. M. et al. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol.12, 71 (2014).
Google Scholar
Montes, L. F. & Wilborn, W. H. Anatomical location of normal skin flora. Arch Dermatol.101, 45–159 (1970).
Google Scholar
Roth, R. R. & James, W. D. Microbial ecology of the skin. Annu. Rev. Microbiol.42, 441–464 (1988).
Google Scholar
Chiller, K., Selkin, B. A. & Murakawa, G. J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc.6, 170–1744 (2001).
Google Scholar
Schommer, N. N. & Gallo, R. L. Structure and function of the human skin microbiome. Trends Microbiol.21, 660–668 (2013).
Google Scholar
Gao, Z., Tseng, C. H., Pei, Z. H. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. USA104, 2927–2932 (2007).
Google Scholar
Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science324, 1190–1192 (2009).
Google Scholar
Ogai, K. et al. A comparison of techniques for collecting skin microbiome samples: swabbing versus tape-stripping. Front. Microbiol.9, 2362 (2018).
Google Scholar
Travis, D. J., Bradbury, J. & Benkendorff, K. Toward non-invasive collection methods for sampling the microbiome of diabetic foot ulcers. Int. Wound. J.20, 3731–3737 (2023).
Google Scholar
Prast-Nielsen, S. et al. Investigation of the skin microbiome: swabs vs. biopsies. Br. J. Dermatol.181, 572–579 (2019).
Google Scholar
Travis, J. et al. The microbiome of diabetic foot ulcers: a comparison of swab and tissue biopsy wound sampling techniques using 16S rRNA gene sequencing. BMC Microbiol.20, 163 (2020).
Google Scholar
Rungjang, A. et al. Skin microbiota profiles from tape stripping and skin biopsy samples of patients with psoriasis treated with narrowband ultraviolet B. Clin. Cosmet. Investig. Dermatol.15, 1767–1778 (2022).
Google Scholar
Clavaud, C. et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS ONE8, e58203 (2013).
Google Scholar
Wang, L. et al. Characterization of the major bacterial–fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp. Dermatol.24, 398–400 (2015).
Google Scholar
Xu, Z. et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci. Rep.6, 24877 (2016).
Google Scholar
Saxena, R. et al. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health. Front. Cell. Infect. Microbiol.8, 346 (2018).
Google Scholar
Park, T. et al. Collapse of human scalp microbiome network in dandruff and seborrheic dermatitis. Exp. Dermatol.26, 835–838 (2017).
Google Scholar
Dityen, K. et al. Analysis of cutaneous bacterial microbiota of Thai patients with seborrheic dermatitis. Exp. Dermatol.31, 1949–1955 (2022).
Google Scholar
Pinto, D. et al. Scalp bacterial shift in Alopecia areata. PLoS ONE14, e0215206 (2019).
Google Scholar
Ho, B. S. et al. Microbiome in the hair follicle of androgenetic alopecia patients. PLoS ONE14, e0216330 (2019).
Google Scholar
Won, E. J., Jang, H. H., Park, H. & Kim, S. J. A Potential predictive role of the scalp microbiome profiling in patients with Alopecia areata: Staphylococcus caprae, Corynebacterium, and Cutibacterium species. Microorganisms.10, 864 (2022).
Google Scholar
Liang, K. et al. A 3D-printed transepidermal microprojection array for human skin microbiome sampling. Proc. Natl. Acad. Sci. USA119, e2203556119 (2022).
Google Scholar
Tridico, S. R., Murray, D. C., Addison, J., Kirkbride, K. P. & Bunce, M. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science. Invest. Gen.5, 16 (2014).
Google Scholar
Brinkac, L. et al. Spatial and environmental variation of the human hair microbiota. Sci. Rep.8, 9017 (2018).
Google Scholar
Nishi, E., Watanabe, K., Tashiro, Y. & Sakai, K. Terminal restriction fragment length polymorphism profiling of bacterial flora derived from single human hair shafts can discriminate individuals. Legal Med.25, 75–82 (2017).
Google Scholar
Watanabe, K., Nishi, E., Tashiro, Y. & Sakai, K. Mode and structure of the bacterial community on human scalp hair. Microb. Environ.34, 252–259 (2019).
Google Scholar
Watanabe, K., Yamada, A., Nishi, Y., Tashiro, Y. & Sakai, K. Relationship between the bacterial community structures on human hair and scalp. Biosci. Biotechnol. Biochem.84, 2585–2596 (2020).
Google Scholar
Watanabe, K., Yamada, A., Nishi, Y., Tashiro, Y. & Sakai, K. Host factors that shape the bacterial community structure on scalp hair shaft. Sci. Rep.11, 17711 (2021).
Google Scholar
Watanabe, K. et al. Distribution of bacterial community structures on human scalp hair shaft in relation to scalp sites. Biosci. Biotechnol. Biochem.87, 1551–1558 (2023).
Google Scholar
Ding, L. & Yokota, A. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of (Pseudomonas) huttiensis, (Pseudomonas) lanceolata, (Aquaspirillum) delicatum and (Aquaspirillum) autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov.. Int. J. Syst. Evol. Microbiol.54, 2223–2230 (2004).
Google Scholar
Kerk, S. K. et al. Bacteria display differential growth and adhesion characteristics on human hair shafts. Front. Microbiol.9, 2145 (2018).
Google Scholar
Adav, S. S. et al. Studies on the proteome of human hair – identification of histones and deamidated keratins. Sci. Rep.8, 1599 (2018).
Google Scholar
Subbaiah, R. S. et al. Identification of antibacterial components in human hair shafts. Acta Derm. Venereol.98, 708–710 (2018).
Google Scholar
Patel, D. P., Swink, S. M. & Castelo-Soccio, L. A review of the use of biotin for hair loss. Skin Appendage Disord.3, 66–169 (2017).
Google Scholar
Chiu, C. H., Huang, S. H. & Wang, H. M. A review: hair health, concerns of shampoo ingredients and scalp nourishing treatments. Curr. Pharm. Biotechnol.16, 1045–1052 (2015).
Google Scholar
Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res.18, 1043–1050 (2008).
Google Scholar
Lange-Asschenfeldt, B. et al. Distribution of bacteria in the epidermal layers and hair follicles of the human skin. Skin Pharmacol. Physiol.24, 305–311 (2011).
Google Scholar
Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of normal skin. Nat Commun.4, 1431 (2013).
Google Scholar
Acosta, E. M. et al. Bacterial DNA on the skin surface overrepresents the viable skin microbiome. eLife.12, RP87192 (2023).
Google Scholar
Lousada, M. B. et al. Laser capture microdissection as a method for investigating the human hair follicle microbiome reveals region-specific differences in the bacteriome profile. BMC Res Notes.16, 29 (2023).
Google Scholar
Yamada, A. et al. Scalp bacterial species influence SIRT1 and TERT expression in keratinocytes. Biosci. Biotechnol. Biochem.87, 1364–1372 (2023).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci.108, 4516–4522 (2011).
Google Scholar
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature.523, 208–211 (2015).
Google Scholar
Kuczynski, J. et al. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet.13, 47–58 (2012).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods.7, 335–336 (2010).
Google Scholar
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods.10, 996–998 (2013).
Google Scholar
Chun, J. et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol.57, 2259–2261 (2007).
Google Scholar